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Abstract: In the paper hereby, results obtained after measuring an UAV operator’s cognitive workload
are announced. Simulation studies have been carried out on RC flight simulator including a genuine control radio
in the loop. Throughout course of the flight session, pupil dilation is being measured simultaneously by means of
a desktop-based eye tracker. The obtained signal is processed further by discrete wavelet transformation in order
to split up both abrupt and gradual changes of pupil diameter. The former pattern supposedly comes as a
consequence of cognitive effort whilst the latter should be attributed to ambient light conditions. Blinks have been
taken into account and excluded from the stage of postprocessing results.

Cognitive workload is presented with regard to number of abrupt oscillations of pupil diameter. Results
have been obtained by means of developing source code in GNU Octave.
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Pe3rome: B Hacmosiwusi Ooknad ca npedcmageHU pe3ynmamu, roslydeHu cred u3MepeaHe
KO2HUMUBHOMO HamoegapgaHe Ha onepamop Ha bJIA. [lposedeHu ca mnomyHamypHU u3crnedgaHuUsi Ha
cumynamop, ek/Yealy peasHa anapamypa 3a yrnpasneHue. 1o epeme Ha ekcriepumeHma OuaMembpbm Ha
3eHuyama ce usMepea Ype3 HacmosieH okynozpadgh 8 peasnHo epeme. NonydeHusim cueHan ce obpabomea ype3
AuckpemHa yelienem mpaHcghopmauyusi, 3a 0a ce pa3densim pesku U MOHOMOHHU U3MeHeHUs1 8 duamembpa Ha
3eHuyama. 3a mbpeusi Moden Ha usmeHeHue ce npednonaea, ye ce Ob/KU Ha KO2HUMUBHO HamoeapeaHe, a 3a
emopusi — Ha oceemeHocmma Ha pabomHama cpeda. [lpemuzeaHusima ca omyemeHu U U3K/oYeHU om emana
Ha obpabomka Ha pe3ynmamume.

KoeHumueHomo HamoeapeaHe e ornpedesieHO 8 3agucumMocm om 6posi Ha pes3kume ocuyunayyu Ha
duamemnbpa Ha 3eHuyama. Peaynmamume ca nony4yeHu nocpedcmeom paspabomka Ha ko0 Ha GNU Octave.

Introduction

Task of measuring pupil dilation comes down to setting apart two reflexes of the visual
analyzer muscles, which often occur simultaneously. Two muscle groups control the pupil dilation: the
circular muscles surrounding the pupil and the radial muscles extending from the pupil to the iris
periphery. Under the influence of a light stimulus, the circular muscles are activated and the radial
ones are suppressed, thus causing the pupil to contract. On the contrary, under the influence of a
cognitive stimulus, the radial muscles are activated and the circular ones are inhibited, which provokes
an abrupt dilation of the pupil diameter.

The study hereby aims at identifying events of high cognitive workload during flight task
performed on RC flight simulator. The research methodology has adopted to some extent what is
described in patent [1] by Sandra P. Marshall. All credits are due to the respectful inventor.
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Materials and Methods

The experiment setup consists of a PC, Gazepoint GP3 HD eye tracker, [2], Taranis X9D+
radio transmitter, [3], RC to USB KSim dongle, Phoenix RC 6.0.i RC flight simulator, [4], and a RC
helicopter, Fig. 1. A trainee is told to perform take off, basic flight manoeuvres, and land within two
minutes. During flight session, the eye tracker is gathering data about pupil diameter variations and
blinks at sampling rate of 150 Hz. The ambient light conditions are set constant.

Fig. 1. Experiment setup: Thunder Tiger Raptor 90 G4 put on the screen

The undecimated discrete wavelet transformation (UDWT) has been chosen to separate
frequency components of the pupil diameter signal. A flowchart depicting two-level implementation is
shown in Fig. 2. It comprises two nested single-level UDWTs. Two stages are recognizably different
during transformation, i.e. decomposition and reconstruction stage, hence the indices d and r. During
decomposition stage, the input signal S is being passed to high pass (Hid) and low pass (Lod) filters
to carry out discrete convolution. After filtering, low (cA, approximations) and high (cD, details)
frequency components are split up. The signal of approximation coefficients cA closely resembles the
input one. The signal of detail coefficients cD is less informative, though it is of particular interest in the
present study.

Hid Decomposition stage Reconstruction stage  Hir

¢ s e F—————————1

— — — Low pass stretched filters

Fig. 2. Two-level undecimated discrete wavelet transformation flowchart

An arbitrary level of transformation might be chosen in order to achieve desired level of signal
denoising or compression. The cascaded multilevel signal decomposition / reconstruction is widely
known as Mallat’s algorithm, [5]. In case of undecimated implementation, filters are stretched at each
level to narrow the frequency pass band and decrease the center frequency while the peak value
doubles (Q behavior), [6].

In present study, Daubeches Db2 wavelet has been chosen. Low order (of two) makes it
feasible for the wavelet to extract high frequencies obtainable from the input signal. Four basic filters
associated with Db2 wavelet are shown in Table 1.

Table 1. Basic Db2 filters

Hir [-0.1294, -0.2241, 0.8365, -0.4830]; basic
Hid = [-0.4830, 0.8365, -0.2241, -0.1294];
Lod [-0.1294, 0.2241, 0.8365, 0.4830];
Lor [ 0.4830, 0.8365, 0.2241, -0.1294]; scaling
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Fig. 3. Db2 filterbank used in case of two-level UDWT (frequency responses)

Filter stretching is performed by upsamplig dyadically basic Db2 filters (Table 1) and
convolving by low pass filter at preceding level of transformation. In Fig. 2, filters falling within each
dashed oval line illustrate the idea. Frequency responses, Fig. 3, of both basic and stretched filters
used at decomposition stage, in case of two-level UDWT, might be depicted in GNU Octave
environment, [7], by means of following script. LtFat library, [8], [9], is required.

[g, a] = wfbt2filterbank ({'db2',2, 'dwt'});
filterbankfreqz(g,a,1024, 'plot', 'linabs', 'posfreq');

Alternatively, frequency and phase responses of stretched filters might be acquired by running the
script below. In this particular example, high pass decomposition filter has been taken into
consideration, Table 1. The prerequisite is Signal library.

db2 Hir; filter = Lor;

db2 upsample (db2, 2); db2(end) = [];

db2 = conv (db2, filter);

[h, w] = freqz(db2);

figure(1l); plot(w/pi, abs(h));

figure (2); plot (w/pi, unwrap (arg(h), pi) / pi);

Non-linear phase response of both basic and stretched filters introduces —km rad worth of lag at
Nyquist (folding) frequency.

Increased cognitive workload dilates pupil diameter rapidly. The phenomenon is called Dilation
Reflex. It is a transitory event. Abrupt changes of pupil diameter are considered irregular and sharp
consisting of large jumps followed by rapid declines, [1]. Therefore, these changes are to be looked for
in the detail coefficient cD1 signal. Pupil light reflex is thought to be filtered out and solely observable
in the approximation coefficient cA2 signal.

The high frequency signal cD1 is believed to have been corrupted by noise. In paper [10],
authors come up with algorithms of signal thresholding. All decomposed coefficients smaller than
expected maximum are zeroed. Noise is assumed normally distributed. The universal threshold
method, based on noise standard deviation o, [10], is computed according to formula

@) A° =0,/2In(N)

where N is the sample size. In most cases o is unknown, though it might be estimated by

median(|x,|)
2 o~ —————~
0.67449
where x; is it" sample. One way of threshold utilizing is the so-called Hard Thresholding Method
0 if |x|<2”
3 X = .
®) Cox o ifx]> 4"

which is also available in LtFat library

[xi, N] = thresh(xi,lambda, "hard');
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Time — Frequency Localization

The proposed algorithm has been put to the test by means of two exact signals with frequency
components of f; = 10 Hz and f, = 100 Hz. The sampling frequency fs was set 4 times the highest
signal frequency. The former signal is periodic containing two superposed cosine functions whilst the
latter assumes a definite form of split cosine function. The wave equations are following:

X, =cos(2x fit)+cos(2zf,t) te[0;1]
@ - cos(2z fit) te[0;1]
2" Jeos(2zf,t) te(12]

Both signals might be seen in Fig. 4 alongside power spectra obtained by means of Fast
Fourier Transformation (FFT). Although set, this problem clearly reveals inability of FFT to discriminate
frequency components over time for both spectra are virtually identical. In this case, the FFT is said to
be localized poorly in time.
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Fig. 4. FFT applied to both periodic (left) and split cosine signals

Two-level Undecimated Discrete Wavelet Transformation was subsequently applied to both
signals by requesting following function from the LtFat library:

[c, info] = ufwt (input, 'db2',2, 'noscale');

In Details and Approximations coefficients charts, Fig. 5, the frequency components are distinctly set
apart on account of a good time — frequency localization of wavelet transformation. Wavelets are
known to have a limited time-interval as well as a limited bandwidth, [6].
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Fig. 5. Two-level UDWT applied to both periodic (left) and split cosine signal

142



Results

Details and approximations coefficients, obtained after applying two-level UDWT, for left pupil,

are shown in Fig. 6 as well as raw data sets.
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Fig. 6. Raw data and decomposed signal, left pupil

In addition, in following Fig. 7, denoised cD1 coefficients, computed according to formulae (1) ...

are shown alongside recorded blinks.
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Fig. 7. Denoised cD1 coefficients
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The computed threshold level is AY = 0.1289. The hard thresholding method preserved 161
samples out of 8584 in total. Sample onsets coinciding with blinks (7 in total) are to be neglected.
Remaining samples are identified as events during which the cognitive load has risen. In order to

localize these events, one may look up in the video stream.
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Discourse

A binary vector might be defined subsequently within limited interval of interest. The vector
length depends upon the eye tracker sampling frequency. Gazepoint GP3 HD eye tracker gathers
data at rate of 150 Hz. Therefore, the vector is floor (150 times seconds) elements long. An
expected time period between two consecutive samples is 6.7 ms. Whenever non-zero samples are
encountered in denoised cD1 signal, the vector takes non-zero elements. In this way, the vector might
indicate a noticeably different pupil activity, [1], attributed to increasing cognitive workload.

Choice of basic wavelet number of coefficients (i.e. order) appears to be essential. Daubeches
wavelets are suitable for solving signal self-similarity properties at separate scales as well as signal
discontinuities. To extract information from the signal is based on number of zero moments equal to
half the number of wavelet coefficients. The higher number of the zero moments, the better ability of
wavelet to delineate a polynomial behaviour of the input signal. It is highly up to an experienced
researcher to make a definitive decision. In addition, decomposition might be repeated to keep on
dividing frequency band to sub-bands (further increase frequency resolution of the coefficient signal).
Last but not the least, the obtained results might be enhanced by EEG measurements carried out
simultaneously.
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